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Steady-state properties of a mean-field model of driven inelastic mixtures
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We investigate a Maxwell model of inelastic granular mixture under the influence of a stochastic driving and
obtain its steady-state properties in the context of classical kinetic theory. The model is studied analytically by
computing the moments up to the eighth order and approximating the distributions by means of a Sonine
polynomial expansion method. The main findings concern the existence of two different granular temperatures,
one for each species, and the characterization of the distribution functions, whose tails are in general more
populated than those of an elastic system. These analytical results are tested against Monte Carlo numerical
simulations of the model and are in general in good agreement. The simulations, however, reveal the presence
of pronounced non-Gaussian tails in the case of an infinite temperature bath, which are not well reproduced by
the Sonine method.
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I. INTRODUCTION

Granular materials, a term coined to classify assemb
of macroscopic dissipative objects, are ubiquitous in nat
and play a major role in many industrial and technologi
processes.

Interestingly, when a rarefied granular system is vibra
some of its properties are similar to those of molecular flui
while others are unique and have no counterpart in ordin
fluids @1#. A spectacular manifestation of this difference c
be observed in a driven mixture of granular particles: if o
measures the average kinetic energy per particle, pro
tional to the so called granular temperature, one finds
surprising result that each species reaches a different va
Such a feature, observed in a recent experiment@2#, is in
sharp contrast with the experience with other states of ma
At a more fundamental level such a behavior is in confl
with the zeroth law of thermodynamics. This principle sta
that when two systems globally isolated are brought i
thermal contact they exchange energy until they reach a
tionary state of mutual equilibrium, characterized by t
same value of their temperatures. A corollary to such a p
ciple is the statement that the thermal equilibrium betwe
systemsA and B, i.e., TA5TB , and betweenA and C(TA
5TC) implies the thermal equilibrium betweenB andC @3#.

On the contrary, when two granular systemA andB sub-
ject to an external driving force exchange energy they m
reach in general a mutual equilibrium, characterized by t
constant but different granular temperaturesTA and TB . In
addition even whenA andC are in equilibrium at the sam
temperatureTC and B and C also have the temperatureTC
one cannot conclude thatA andB would be in mutual equi-
librium at the same temperature. In other words, one of
most useful properties of the temperature, i.e., the indep
dence from the thermal substance is lost when one deals
granular materials.

In the present paper we shall investigate the propertie
a simple model of two-component granular mixture. The m
1063-651X/2002/66~1!/011301~10!/$20.00 66 0113
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tivation of our study relies on the fact that granular materi
being mesoscopic objects are often constituted by assem
of grains of different sizes and/or different physical and m
chanical properties. The study of granular mixtures has
tracted so far the attention both of theoreticians@4# and of
experimentalists@2#. In particular Garzo´ and Dufty have
studied the evolution of a mixture of inelastic hard spheres
the absence of external driving forces, a process termed
cooling because it is associated with a decrease of the a
age kinetic energy of the system, i.e., of its granular tempe
ture. During the cooling of a mixture, which can be hom
geneous or not, according to the presence of spatial den
and velocity gradients, each species may have differ
granular temperatures, although these may result asymp
cally proportional, i.e., they might decrease at the same r

Menon and Feitosa instead studied several mixtures
vibrated inelastic grains and reported their failure to rea
the same granular temperature.

In the present paper our interest will be concentrated
the statistically stationary state obtained by applying an
ergy feeding mechanism represented by a stochastic dri
force.

The most widely used model of granular materials is, p
haps, the inelastic hard sphere model~IHS! @5#, which as-
sumes the grains to be rigid and the collisions to be bina
instantaneous, and momentum conserving. The dissipa
nature of the collisions is accounted for by values less tha
of the so called restitution coefficientr. Even such an ideal-
ized model represents a hard problem to the theorist and
has to rely on numerical methods, namely, molecular dyna
ics or event driven simulation, or to resort to suitable tru
cation schemes of the hierarchy of equations for the dis
bution functions. One of these schemes is represented by
Boltzmann equation based on the molecular chaos hyp
esis, which allows to study the evolution of the one-parti
distribution function. Its generalization to the two
component mixture of inelastic hard spheres has been
cently considered by Garzo´ and Dufty.
©2002 The American Physical Society01-1
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Our treatment will depart from previous studies, beca
we have chosen an even simpler approach based on th
called gases of inelastic~pseudo!-Maxwell molecules. The
inelastic Maxwell model has recently been the object
vivid interest because it illustrates in a transparent fash
the non trivial role of inelasticity on the properties of th
system. These gases are natural extensions to the ine
case of the models of Maxwell molecules@6#, where the
collision rate is independent of the relative velocity of t
particles. Such a feature greatly simplifies both the analyt
structure of the Boltzmann equation and the numer
implementation of the algorithm simulating the gas dyna
ics. Although the constant collision rate is somehow unre
istic one may hope to be able to capture some salient feat
of granular mixtures, and in particular to reach a better
derstanding of their global behavior, because the model le
itself to analytical studies.

This type of approach to granular gases had recent
surge of activity since the work of Ben-Naim and Krapivs
@7,8#, our group@9–11#, Ernst and co-workers@12#, and Cer-
cignani and co-workers@13,14#, and is providing a series o
important results concerning the energy behavior and
anomalous velocity statistics of granular systems.

The paper is organized as follows: in Sec. II we define
model and deduce the associated Boltzmann equations
erning the evolution of the velocity distribution functions
the two species and set up their moment expansion; in
III we shall determine the exact values of the station
granular temperatures; in Sec. IV we consider the mome
up to the eighth order and compute the distribution functio
by means of the so called Sonine expansion. In Sec. V
simulate on a computer the dynamics of the inelastic mixt
and compute numerically the distribution functions and co
pare these with the theoretical predictions. Finally in Sec.
we present our conclusions.

II. DEFINITION OF THE MODEL

In the following we shall consider a mixture of Maxwe
inelastic molecules subject to a random external driving.
us consider an assembly ofN1 particles of species 1 andN2
particles of species 2. For the sake of simplicity we assu
the velocitiesv i

a , with a51,2, to be scalar quantities. Th
two species may have different masses,m1 and m2 and/or
constant restitution coefficients that depend on the natur
the colliding grains but not on their velocities, i.e.,r 11, r 22,
and r 125r 21.

The mixture evolves according to the following set
stochastic equations:

mi

dv i

dt
5Fi1 f i1j i~ t !, ~1!

where the total force acting on particlei is made of three
contributions: the impulsive forceFi due to mutual colli-
sions, the velocity dependent forcef i52Gv i due to the fric-
tion of the particles with the surroundings and the stocha
forcej i due to an external random drive. Since we are in
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ested in the rapid granular flow regime, we model the co
sions as instantaneous binary events, similar to those oc
ring in a hard-sphere system.

The presence of the frictional, velocity dependent term
addition to the random forcing@15#, not only mimics the
presence of friction of the particles with the container, b
also is motivated by the idea of preventing the energy o
driven elastic system (g→1), to increase indefinitely.

Let us observe that in the absence of collisions the ve
ity changes are described by the following Ornste
Uhlenbeck process:

ma] tv i~ t !52Gv i~ t !1j i
a~ t !, ~2!

where the stochastic acceleration term is assumed to ha
white spectrum with zero mean,

^j i
a~ t !&50 ~3!

and variance

^j i
a~ t !j j

b~ t8!&52Dda,bd i , jd~ t2t8! ~4!

By redefining the bath constantsGa5G/ma and Da

5D/ma
2 , it is straightforward to obtain the probability dis

tributions of the velocity of each species,Pa(v,t). In fact,
the Fokker-Planck equations associated with the process~2!,

] tPa~v,t !5Ga]v@vPa~v,t !#1Da]v
2Pa~v,t ! ~5!

possess the following stationary distribution functions:

Pa~v !5A ma

2pTb
e2(mav2)/(2Tb), ~6!

whereTb5D/G represents the temperature of the heath ba
that we fix to be the same for the two species~see also
Appendix B!.

In order to represent the effect of the collisions on t
evolution of the system we assume that the velocities cha
instantaneously according to the rules

v i8
a5v i

a2@11r ab#
mb

ma1mb
~v i

a2v j
b!, ~7a!

v j8
b5v j

b1@11r ab#
ma

ma1mb
~v i

a2v j
b!, ~7b!

where the primed quantities are the postcollisional veloci
and the primed are the velocities before the collisions
finite fraction of the kinetic energy of each pair is dissipat
during a collision. Between collisions the velocities perfor
a random walk due to the action of the heat bath. In suc
model the typical timetc between particle-particle collision
is an adjustable parameter and is assumed to be small c
pared to the heat bath relaxation times, which aretb1
5m1/G51/G1 andtb25m2 /G51/G2. WhenG→0 we must
also takeD→0 in performing the elastic limit, otherwise th
kinetic energy would diverge asymptotically. In fact in Se
1-2
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STEADY-STATE PROPERTIES OF A MEAN-FIELD . . . PHYSICAL REVIEW E66, 011301 ~2002!
V we shall discuss the situation of inelastic particles w
vanishing friction, a case already considered in Refs.@7,13#.

The evolution equations for the probability densities
finding particles of speciesa with velocity v at timet for the
system subject both to external forcing and to collisions
simply obtained by adding the two effects,

] tPa~v,t !5Ga]v@vPa~v,t !#1Da]v
2Pa~v,t !

1
1

tc
Qa~P1 ,P2!, ~8!

where the collision integralsQa consist of a negative los
term and a positive gain term respectively,

Q1~P1 ,P2!52P1~v,t !

1
2p

11r 11
E duP1~u,t !P1S 2v2~12r 11!u

11r 11
,t D

1
~12p!

11r 12

m11m2

m2
E duP1~u,t !P2

3S m11m2

m2
v2S m1

m2
2r 12Du

11r 12
,tD , ~9a!

Q2~P1 ,P2!52P2~v,t !1
2~12p!

11r 22
E duP2~u,t !P2

3S 2v2~12r 22!u

11r 22
,t D

1
p

11r 12

m11m2

m1
E duP2~u,t !P1

3S m11m2

m1
v2S m2

m1
2r 12Du

11r 12
,tD , ~9b!

where p5N1 /(N11N2). In writing Eqs. ~9! we have as-
sumed that the collisions occur instantaneously and that
lisions involving more than two particles simultaneously c
be disregarded. Moreover, all pairs are allowed to excha
impulse regardless of their mutual separation, in the spiri
a mean-field model. In order to proceed further it is con
nient to take Fourier transforms of Eqs.~9! and employ the
method of characteristic functions@16# defined as

P̂a~k,t !5E
2`

`

dveikvPa~v,t ! ~10!

The resulting equations read

] t P̂1~k,t !52D1k2P̂1~k,t !2G1k]kP̂1~k,t !

2
1

tc
$P̂1~k,t !2pP̂1~g11k,t !P̂1@~12g11!k,t#

2~12p!P̂1~ g̃12k,t !P̂2@~12g̃12!k,t#%, ~11a!
01130
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] t P̂2~k,t !52D2k2P̂2~k,t !2G2k]kP̂2~k,t !2
1

tc
@ P̂2~k,t !

2~12p!P̂2~g22k,t !P̂2@~12g22!k,t#

2pP̂2~ g̃21k,t !P̂1@~12g̃21!k,t## ~11b!

with

gab5
12r ab

2
, ~12a!

g̃125F12
2

11z
~12g12!G , ~12b!

g̃215F12
2

11z21
~12g12!G , ~12c!

with z5m1 /m2
The mathematical structure of Eqs.~11! is particularly

simple and in fact there exists a standard method of solut
It consists in expanding the Fourier transformP̂a(k,t) of the
distributionsPa(v,t) in a Taylor series around the origink
50,

P̂a~k,t !5 (
n50

`
~ ik !n

n!
mn

a~ t ! ~13!

and substituting Eq.~13! into Eqs.~11!.
Equating like powers ofk we obtain a hierarchy of equa

tions for themn
a(t) which can be solved by a straightforwar

iterative method. At this stage one can appreciate the m
ematical convenience of the Maxwell model. In fact, the c
efficients of the Taylor series represent the moments of
velocity distributions,

mn
a~ t !5E

2`

`

dvvnPa~v,t !. ~14!

Since the evaluation of the moments of a given ord
requires only the knowledge of the moments of lower ord
one can proceed without excessive difficulty to any desi
order. In practice, we carried on our calculation up to t
eighth moment, assuming that the initial distributions we
even, so that the odd moments vanish. In order to render
reading of the paper more expeditious we shall report
equations determining the stationary value of the moment
the Appendix.

III. TWO-TEMPERATURE BEHAVIOR

In order to determine the granular temperatures we eq
the coefficients of orderk2 in Eqs.~11! and obtain the gov-
erning equations for the second moments,
1-3
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tc] tm2
(1)5$p@2g11~g1121!#2~12p!~12g̃12

2 !

22tcG1%m2
(1)1~12p!~12g̃12!

2m2
(2)12tcD1 ,

~15a!

tc] tm2
(2)5$~12p!@2g22~g2221!#2p~12g̃21

2 !

22tcG2%m2
(2)1p~12g̃21!

2m1
(2)12tcD2

~15b!

The right-hand side of Eqs.~15! represent the balanc
between the energy dissipation due to inelastic collisions
friction and the energy input due to the bath. We define
global and the partial granular temperatures respectivel
Tg5pT11(12p)T2 and Ta5 1

2 ma^va
2&, where the average

is performed over the noisej i . Since the energy dissipatio
and the energy supply mechanisms compete, the system
der the influence of a stochastic white noise driving achie
asymptotically a statistical steady state. Notice that Eqs.~15!
feature only the second moments of the velocity distrib
tions, so that the solution is straightforward. Such a state
affairs should be contrasted with the analog problem of
termining the partial temperatures in Boltzmann models@4#.
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Let us start analyzing the behavior of the Maxwell gas
the one component limitp→1. The granular temperatur
approaches its stationary valueT1 exponentially,

T1~ t !5T1~0!e22t/t1T1~`!@12e22t/t#, ~16!

where the constantt represents a combination of the tw
characteristic times of the process given by

1

t
5

g11~12g11!

tc
1

G

m1
, ~17!

which shows thatTb is an upper bound to the granular tem
perature. We also obtain a simple relation between the t
perature of the bath and the granular temperatureT1,

T1`5m1

D1

G12
g11~g1121!

tc

<
D

G
5Tb . ~18!

On the other hand, when the two components are
identical Eqs.~15! show that the equilibrium macrostate
specified by two different partial granular temperatures, b
proportional to the heath-bath temperature. This means
the ratio of the two temperatures is independent from
driving intensityD. This is also seen from the formula
T1

T2
5

1

z

~12p!@2g22~12g22!#1p~12g̃21
2 !12

tc

tb2
1~12p!z2~12g̃12!

2

p@2g11~12g11!#1~12p!~12g̃12
2 !12

tc

tb1
1pz22~12g̃21!

2

. ~19!
s is
ffi-

al-

t the

for
Formula in Eq.~19! illustrates the two-temperature beha
ior of an inelastic mixture subject to external driving. Noti
that the temperature ratio in the driven case is different fr
the corresponding quantity in the cooling undriven case,
the same model system. In the undriven case we found
the homogeneous cooling state was characterized by two
ferent exponentially decreasing temperatures, but whose
tio was constant. However, no simple relation exists betw
the ratio relative to the two cases, on account of the fact
the energy exchanges involved are rather different. In
presence of a heath bath the inelastic mixture displays
two-temperature behavior already reported in the free c
ing case@4,17# and in experiments@2#. This feature seems to
be a general property of inelastic systems. In Fig. 1 we
play the temperature ratio as a function of the mass ratz
for two different values of the inelasticity. Notice that th
temperature of the heavier component is lower than the
of the lighter species. Finally we notice that in the cooli
case the temperature ratio was a increasing function oz,
while in the present model it is a decreasing function of
same variable. Such an effect depends crucially on the c
sen form of the heat bath. In Appendix B we discuss anot
choice of the heat-bath parameters that makeT1 /T2 an in-
creasing function ofz.
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In Fig. 2 the ratio of the temperatures of the two specie
plotted in the case of an asymmetry in the restitution coe
cients parametrized by the form:r 225r 112x with r 125(r 22
1r 11)/2, for p51/2, identical masses and three different v
ues of the coefficientr 11 as shown in figure. In Fig. 3 we
display the same quantity as a function of concentrationp for
different choices of the other parameters. One sees tha

FIG. 1. Temperature ratio as a function of the mass ratio
different choices of the inelasticity parameter, forp50.5, andr 11

5r 225r 125r 50.95 ~solid line! and r 50.5 ~dashed line!.
1-4



g
g.

try
tw

th
n-

q
r

ig
le
s

tic
n

els
n
e

st
he
he

ly-
city

th
ne
ity
ty.

sis
of a

con-
ssian

of
di-
e
ion
of

u-
cal-
al
l-

rst
m-

by
ear

of

in

x-

tr
y
.4
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variation of T1 /T2 is much smaller than the correspondin
variation with respect to the mass asymmetry shown in Fi
in agreement with the experimental observation of Ref.@2#.
It seems reasonable to conclude that the mass asymme
the larger source of temperature difference between the
components.

IV. VELOCITY DISTRIBUTION FUNCTIONS

An interesting aspect of granular systems concerns
nature of the single particle velocity distributions. The i
elasticity, in fact, causes marked departures ofPa(v,t) from
the Gaussian form which characterizes gases at thermal e
librium. In undriven gases these deviations are particula
pronounced and one observes inverse power law h
velocity tails both in gases of pseudo-Maxwell molecu
@17# and in IHS @18#. In the driven case, i.e., in system
subject to Gaussian white noise forcing@similar to that rep-
resented by Eq.~2! with G50# exponential tails of the form
exp(2v3/2) have been predicted theoretically in inelas
hard-sphere models@18# and tested by direct simulatio
Monte Carlo of the Enskog-Boltzmann equation@19#. Have
these non-Gaussian tails a counterpart in Maxwell mod
Ben-Naim and Krapivsky@7# on the basis of a resummatio
of the moment expansion concluded that the scalar Maxw

FIG. 2. Temperature ratio as a function of the asymme
r 22/r 11 for p50.5, z51, and different choices of the inelasticit
parameterr 11, from top to bottom this is respectively 0.99, 0.9, 0
~line!.

FIG. 3. Temperature ratio as a function of the molar fractionp
for different choices of the inelasticity parameterr 5r 115r 22

5r 12, and of the mass rationz.
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models with vanishing viscosity (G50) should display
Gaussian-like tails. However, this prediction is in contra
with the argument, employed by Ernst and van Noije in t
case of IHS, which consists in estimating the tails of t
distribution by linearizing the master equation~9! by ne-
glecting the gain term. This assumption simplifies the ana
sis and allows us to reach the conclusion that the velo
distribution for largev should vanish as

lim
v→`

P~v !}exp~2v/v0!, ~20!

with v0
25Dtc . Clearly such a result is in sharp contrast wi

the result of Ref.@7# and seems to indicate that the Soni
expansion does not reproduce faithfully the high-veloc
tails in the case of Maxwell models with vanishing viscosi
The test of the limit~20! will be shown in Sec. VI, where we
illustrate the results of our numerical simulations.

On the other hand, the same kind of asymptotic analy
sketched above, allows us to conclude that the presence
viscous damping is the redeeming feature that renders
vergent the Sonine expansion and the associated Gau
tails. In fact, with a finite value ofG the asymptotic solution
is of the form

lim
v→`

P~v !}exp~2Cv2!. ~21!

We shall test such a prediction in the remaining part
this section and study the velocity distributions of the in
vidual species whenG5” 0 by constructing the solution to th
master equation using the Sonine polynomial expans
method, one of the traditional approaches to the solution
the Boltzmann equation@20#.

We shall also investigate whether the two partial distrib
tions can be cast into the same functional form upon res
ing the velocities with respect to the partial granular therm
velocity, in other words if it is possible to have a data co
lapse for the two distributions.

We shall first obtain the steady-state values of the fi
eight moments as illustrated in the Appendix and then co
pute the approximate form of the distribution functions
assuming that these are Gaussians multiplied by a lin
combination of Sonine polynomials.

Let us begin by writing the following Sonine expansion
the distribution functions:

f a~c!5
1

Ap
e2c2F11 (

n51

`

an
aSn~c2!G , ~22!

where f a(c) is the rescaled distribution defined by

f a~c!5A2m2
aPa~v ! ~23!

and c25v2/2m2
a . The expansion gives the distributions

terms of the coefficientsan
a of the Sonine polynomials

Sn(c2). In practice, one approximates the series~22! with a
finite number of terms. Since the leading term is the Ma

y

1-5
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UMBERTO MARINO BETTOLO MARCONI AND ANDREA PUGLISI PHYSICAL REVIEW E66, 011301 ~2002!
wellian, the closer the system is to the elastic limit, the l
terms suffice to describe the state. The expression of the
polynomials is

S0~c2!51, ~24a!

S1~c2!5
1

2
2c2, ~24b!

S2~c2!5
3

8
2

3

2
c21

1

2
c4, ~24c!

S3~c2!5
5

16
2

15

8
c21

5

4
c42

1

6
c6, ~24d!

S4~c2!5
35

128
2

35

16
c21

35

16
c42

7

12
c61

1

24
c8. ~24e!

In order to obtain the firstm valuesam
a , we need to com-

pute the rescaled moments^cn&a of the distribution functions
up to order 2m. These moments are evaluated in Appen
by means of a straightforward iterative method. At the e
knowing the rescaled moments, one obtains the follow
relation for the coefficients:

FIG. 4. Second coefficient of the Sonine expansiona2, for each
component as a function of the mass ratioz, m151 and for p
50.5 andr 115r 225r 1250.5. We have also fixed 1/G[tb15200
andtc525.

FIG. 5. Third coefficient of the Sonine expansiona3, for each
component as a function of the mass ratioz. The remaining param-
eters are as in Fig. 4.
01130
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a5

^Sn~c2!&a

Nn
. ~25!

Equation~25! can be proved by imposing the consisten
condition

^cn&a5E
2`

`

dccnf a~c! ~26!

in conjunction with the orthogonality property of the Sonin
polynomials,

E
2`

` 1

Ap
e2c2

Sn~c2!Sm~c2!5Nndm,n , ~27!

whereNn is a normalization constant. Notice that in order
obtain our results we have not assumed weak inelastic
therefore these hold for any value of the restitution coe
cients.

The coefficientsam
a up to the fourth order in terms of th

rescaled moments read

a1
a50, ~28a!

a2
a5F124^c2&a1

4

3
^c4&aG , ~28b!

a3
a5F126^c2&a14^c4&a2

8

15
^c6&aG , ~28c!

a4
a5F128^c2&a18^c4&a2

32

15
^c6&a1

16

105
^c8&aG .

~28d!
In Figs. 4–6 we display the behavior of the Sonine co

ficients for both components in the case of equal restitut
coefficientsr 50.5 as a function of the mass ratio.

In Figs. 7–9 we illustrate the variation of the Sonine c
efficients for the two components as a function of the inel
ticity for two different values of the mass ratio:z51 andz
52. Notice that the coefficients are monotonic functions
the inelasticity as already noticed in pure systems@18#.

In Fig. 10 we show the distribution functions for th

FIG. 6. Fourth coefficient of the Sonine expansiona4, for each
component as a function of the mass ratioz. The remaining param-
eters are as in Fig. 4.
1-6
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heated system with nonvanishing viscosity. The tails beco
fatter with increasing order of the approximation, i.e., t
high-energy tails are overpopulated. Moreover, one sees
whenp51/2 and the restitution coefficients are all equal t
species with the larger tails is the lighter. On the other ha
for a system with the same masses, but different restitu
coefficients, the more elastic species displays the larger t
We also show the numerical data obtained by simulating
the dynamics. The agreement is quite satisfactory and v
dates the approximation method employed.

On the other hand, it is also evident, that the two dis
butions fail to collapse one over the other after the resca
of the velocities. This fact is consistent with the differe
values assumed by the coefficientsan

1 andan
2 . However, this

effect is rather small and can be appreciated only by study
the high-velocity region of the distribution functions.

V. NUMERICAL SIMULATIONS

To investigate the validity of the previous results and
particular to test the convergence of the Sonine expansio
different situations we shall present in this section numer
results obtained by simulating an ensemble ofN particles
subject to a Gaussian forcing, viscous friction, and inela
collisions.

The scheme consists of the following ingredients,

FIG. 8. Third coefficient of the Sonine expansiona3, for each
component as a function of the inelasticityr 5r 115r 225r 12, for
p50.5 andm151 andz52 andz51. The remaining parameter
are as in Fig. 4.

FIG. 7. Second coefficient of the Sonine expansiona2, for each
component as a function of the inelasticityr 5r 115r 225r 12, for
p50.5 andm151 andz52 andz51. The remaining parameter
are as in Fig. 4.
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~i! Time is discretized, i.e.,t5n3dt.
~ii ! Update all the velocities to simulate the random fo

ing and the viscous damping,

v i
a~ t1dt!5v i

a~ t !e2 dt/tb1ATb~12e2(2dt/tb)!W~ t !, ~29!

whereW(t) is a normally distributed deviate with zero mea
and unit variance.

~iii ! Choose randomlyN(dt)/(2tc) pairs of velocities and
update each of them with the collision rule~7!. In this way a
mean collision timetc per particle is guaranteed.

~iv! Change the time countern and restart from~ii !.
In other words, at every step each particle experience

Gaussian kick thus receiving energy from the bath, wher
it dissipates energy by collision and by damping. For e
ample, by choosingdt51, m1 /G5tb15200, andtc525,
we obtain that each particle in the average experiences
Gaussian kicks between two successive collisions and
the resulting average kinetic energy is stationary. In orde
compare our numerical simulations with the theoretical p
dictions we fixed the temperature of the bath to beTb51,
i.e., chosenD5G. The results of such simulations are pr
sented in Fig. 10 and show a very good agreement betw
the theory and the simulation.

FIG. 9. Fourth coefficient of the Sonine expansiona4, for each
component as a function of the inelasticityr 5r 115r 225r 12, for
p50.5 andm151 andz52 andz51. The remaining parameter
are as in Fig. 4.

FIG. 10. Rescaled distribution functions for the two compone
for a model system characterized bym151, m250.5 and equal
inelasticitiesr 50.5, Tb51 and the remaining parameters as
Fig. 4.
1-7
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On the contrary, the agreement between the Sonine ex
sion and the simulation is not completely satisfactory wh
we consider a system subject to a white noise accelera
but without viscous friction, a driving proposed by som
authors @21,22#. This can be considered as the limitG
→0, Tb→`, keeping constantD5TbG, in the model de-
fined by Eqs.~8!: note that in this case the elastic limitr
→1 cannot be performed without taking also the limitD
→0 as discussed at the beginning, in order to avoid a di
gence of kinetic energy. For the sake of simplicity, we sim
lated a one-component system (p51 andm51) with van-
ishing viscosityG50, butD50.000 8,tc5250, andr 50.5.
Such a choice yields a granular temperatureTg516/15, as
predicted by our formula~18!. Notice that in this case the
heath-bath temperature diverges and the gas does not h
proper elastic limit, since all moments diverge wheng→0.
We observed that the tails of the velocity distribution fun
tion are strongly non-Gaussian. These decay as a simple
ponential as predicted by our simple analysis of the prec
ing section. In Fig. 11 we report our simulation resu
against the Sonine approximation. We observe that the th
retical estimate, in spite of incorporating the exact values
the first eight moments, deviates from the numerical data
the large velocity region. In particular the Sonine expans
can only give Gaussian tails, whereas the simulation in
cates a slower exponential decay. The reason for such a
crepancy is to be ascribed to the slow convergence of
expansion whenG50.

VI. DISCUSSION AND CONCLUSIONS

To summarize we have studied the behavior of a mo
which perhaps represent the simplest description of a dr
inelastic gas mixture, namely, an assembly of two types
scalar pseudo-Maxwell molecules subject to a stocha
forcing. We have obtained the velocity distributions for ar
trary values of the inelasticity, of the composition and of t
masses by solving the associated Boltzmann equation
means of a controlled approximation, the moment expans

FIG. 11. Rescaled distribution functions for a one compon
system (p51) with vanishing viscosity (G50), D50.000 8, r
50.5, andtc5250. We show the initial Gaussian distributiont
50) and the asymptotic (t53000) stationary distribution. Notice
the presence of high-velocity tails. For the sake of comparison
report the theoretical estimate of the distribution obtained by me
of the Sonine expansion.
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The distributions were obtained by computing exactly t
moments up to the eighth order and then imposing that
corrections to the Maxwell distribution stemming from th
inelasticity are Gaussians multiplied by a linear combinat
of Sonine polynomials with amplitudes determined se
consistently.

The model predicts a steady two-temperature beha
that is in qualitative agreement with existing experimen
results. The granular temperatures can be obtained by
simple algebraic manipulations for arbitrary values of t
control parameters.

By numerical simulations we demonstrated that the vel
ity distributions are well described by our series represen
tion in the case of systems in contact with a bath at fin
temperatureTb , whilst the series expansion breaks down
the case of systems in contact with bath at infinite tempe
ture, i.e., with zero viscosity.

What can be learned from such a simple model of gra
lar mixture? Besides obtaining a global picture of the beh
ior of the system with a minimal numerical effort both in th
cooling and in the driven case, the model displays the no
feature of two different distribution functions, which rema
different even after rescaling by the associated partial gra
lar temperatures. Of course the detailed form of the proba
ity velocity distributions are strictly model dependent, i.
depend on the assumption of a constant collision rate in
ent in Maxwell models. The vectorial character of the velo
ties could be included at the cost of a moderate additio
effort. A more interesting and difficult problem would be th
of including in the mixture case a collision frequency pr
portional to an appropriate function of the kinetic granu
temperatures, generalizing the work of Cercignani@13#.

Finally we might ask the general question of the mean
of granular temperature. Our findings seem to indicate tha
is still the main statistical indicator of the model granul
system we studied. However, with respect to the tempera
of a perfectly elastic system it fails to satisfy a very ba
requirement which is known as the zeroth principle of th
modynamics.
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APPENDIX A

In the present Appendix we sketch the derivation of t
various moments of the distribution functions. By equati
the equal powers ofk in the master equation~11! we obtain
a set of linear coupled equations for the moments. T
method of solution is iterative, because the higher mome
depend on the lower moments. Thus, for instance, to eval
the lowest-order moments of the distribution functions
must solve the following equations for the steady-state va
of the fourth moments:

t

e
ns
1-8
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~d11
(4)24G1tc!m4

(1)1d12
(4)m4

(2)1a11~m2
(1)!21a12m2

(1)m2
(2)

112D1tcm2
(1)50, ~A1a!

~d22
(4)24G2tc!m4

(2)1d21
(4)m4

(1)1a22~m2
(2)!21a21m2

(1)m2
(2)

112D2tcm2
(2)50. ~A1b!

In turn, the sixth moments are obtained by solving

~d11
(6)26G1tc!m6

(1)1d12
(6)m6

(2)1b11m2
(1)m4

(1)1b12m2
(1)m4

(2)

1b128 m2
(2)m4

(1)130D1tcm4
(1)50, ~A2a!

~d22
(6)26G2tc!m6

(2)1d21
(6)m6

(1)1b22m2
(2)m4

(2)1b21m2
(1)m4

(2)

1b218 m2
(2)m4

(1)130D2tcm4
(2)50. ~A2b!

Finally the eight moments are the solutions of

~d11
(8)28G1tc!m8

(1)1d12
(8)m8

(2)1c11m2
(1)m6

(1)1c118 ~m4
(1)!2

1c12m2
(1)m6

(2)1c128 m4
(1)m4

(2)1c129 m6
(1)m2

(2)

156D1tcm6
(1)50, ~A3a!

~d22
(8)28G2tc!m8

(2)1d21
(8)m8

(1)1c22m2
(2)m6

(2)1c228 ~m4
(2)!2

1c21m2
(2)m6

(1)1c218 m4
(2)m4

(1)1c219 m6
(2)m2

(1)

156D2tcm6
(2)50, ~A3b!

where the general form of the coefficientsdi j is given by

d11
(n)5211p@g11

n 1~12g11!
n#1~12p!@ g̃12#

n,
~A4a!

d12
(n)5~12p!@~12g̃12!#

n, ~A4b!

d22
(n)5211~12p!@g22

n 1~12g22!
n#1p@ g̃21#

n,
~A4c!

d21
(n)5p@~12g̃21!#

n ~A4d!

and the coefficientsai j are given by

a1156p@g11~12g11!#
2, ~A5a!

a2256~12p!@g22~12g22!#
2, ~A5b!
01130
a1256~12p!@~12g̃12!#
2@ g̃12#

2, ~A5c!

a2156p@~12g̃21!#
2@ g̃21#

2. ~A5d!

Finally, the coefficientsbi j are given by

b11515pg11
2 ~12g11!

2@g11
2 1~12g11!

2#, ~A6a!

b22515~12p!g22
2 ~12g22!

2@g22
2 1~12g22!

2#,
~A6b!

b12515~12p!@~12g̃12!#
4@ g̃12#

2, ~A6c!

b128 515~12p!@~12g̃12!#
2@ g̃12!]

4, ~A6d!

b21515p@~12g̃21!#
2@ g̃21#

4, ~A6e!

b218 515p@~12g̃21!#
4@ g̃21#

2 ~A6f!

andci j are

c11528pg11
2 ~12g11!

2@g11
4 1~12g11!

4#, ~A7a!

c118 570pg11
4 ~12g11!

4, ~A7b!

c12528~12p!@~12g̃12!#
6@ g̃12#

2, ~A7c!

c128 570~12p!@~12g̃12!#
4@ g̃12#

4, ~A7d!

c129 528~12p!@~12g̃12!#
2@ g̃12#

6, ~A7e!

c22528~12p!g22
2 ~12g22!

2@g22
4 1~12g22

4 !#, ~A7f!

c228 570~12p!g22
4 ~12g22!

4, ~A7g!

c21528p@~12g̃21!#
6@ g̃21#

2, ~A7h!

c218 570p@~12g̃21!#
4@ g̃21#

4, ~A7i!

c219 528p@~12g̃21!#
2@ g̃21#

6. ~A7j!

It is useful to consider the behavior of the moments in
one-component case. The major simplicity of the result
formulas allows us to obtain explicit expressions
m25
Dtc

Gtc1g~12g!
, ~A8a!

m45
12Dtcm216g2~12g!2m2

2

4Gtc112g42~12g!4
, ~A8b!

m65
30Dtcm4115g2~12g!2~g21~12g!2m2m4

6Gtc112g62~12g!6
, ~A8c!
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m85
56Dtcm6128g2~12g!2@g41~12g!4#m2m6170g4~12g!4m4

2

8tcG112g82~12g!8
. ~A8d!
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APPENDIX B

Notice that, in order to reduce the number of free para
eters, we have assumed the constants,D and G, which
specify the interactions with the bath to be species indep
dent. Such a choice implies that in the elastic limit bo
components reach the same granular temperature give
the temperature of the bath,Tb . However, such a require
ment could also be satisfied by a different procedure. T
second possibility consists of assuming the equation of e
lution in the absence of collisions to be given by

ma] tv i
a~ t !52makv i

a~ t !1A2makTbW~ t !, ~B1!

whereW(t) is a Gaussian noise with zero average and v
anced(t2t8).

Thus in the case considered in Sec. II the viscous da
od

ics

i,

i,

.

E

01130
-

n-

by

is
o-

i-

p-

ing and the stochastic force were the same for both com
nents, in Eq.~B1! the viscous force and the noise varian
are proportional to the mass of each species.

Although Eqs.~5! and ~B1! admit the same equilibrium
distribution functions~6!, the relaxation processes are diffe
ent. In addition, the presence of collisions will generate d
ferent results, in particular different temperature ratios.

In fact, the Fokker-Planck forPa(v,t) for this second
case reads

] tPa~v,t !5k]v@vPa~v,t !#1
kTb

ma
]v

2Pa~v,t !. ~B2!

For this alternative choice we only give the temperatu
ratio and comment that it is a monotonically increasing fun
tion of z in contrast with the behavior illustrated in Sec. II
. III. The
e two

ds
T1

T2
5

~12p!@2g22~12g22!#1p~12g̃21
2 !12ktc1~12p!z2~12g̃12!

2

p@2g11~12g11!#1~12p!~12g̃12
2 !12ktc1pz22~12g̃21!

2
. ~B3!

The formula~B3! shows that the dependence on the mass ratio is much weaker than in the case considered in Sec
growth of T1 /T2 with z is similar to that of the homogeneous cooling, although no simple relation exists between th
cases.

Other authors observed the same qualitative increasing trend@23#. However, only the experimental conditions one inten
to mimic can resolve the ambiguity relative to the choice of the heat-bath parameters.
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